Скачать [Geekbrains] Введение в искусственный интеллект [Светлана Шорина, Дмитрий Санников, Илья Акчурин]

Информация
Цена: 495 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
402 613
Реакции
39 510
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
[Geekbrains] Введение в искусственный интеллект [Светлана Шорина, Дмитрий Санников, Илья Акчурин]
Ссылка на картинку
1 модуль: Основы программирования на языке Python
Урок 1
Работа с данными и математическими операциями в Python

Python — главный инструмент дата-сайентиста: на нём пишут алгоритмы машинного обучения. Учимся управлять данными и решать уравнения на Python.
  • Устанавливаем программы для прохождения курса
  • Управляем вводом и выводом данных в первой программе по Python
Урок 2
Основные конструкции языка Python

Создаём алгоритмы и осваиваем основные компоненты компьютерной программы.
  • Изучаем условия if, elif, else
  • Изучаем циклы for, while
  • Тренируемся программировать на Python и создаём программу с базовыми алгоритмами
Урок 3
Структуры данных в Python

Изучаем принципы работы с данными.
  • Узнаём, как работают данные, списки, словари и файлы
  • Знакомимся с датасетом — набором данных. Учимся его обрабатывать с помощью простейших операций
  • Занимаемся вводом и выводом данных
Урок 4
Функции в Python


Изучаем, как работать с функциями.
  • Узнаём, как создавать функции и передавать параметры
  • Изучаем глобальные и локальные переменные
  • Добавляем полезные функции к датасету из третьего урока

2 модуль: Numpy и Pandas — инструменты, которые помогают получать данные
Урок 5
Pandas. Установка. Учимся работать с данными и таблицами

Изучаем Pandas — программную библиотеку на Python для обработки и анализа данных.
  • Получаем датасет с числовыми метриками
  • Устанавливаем Pandas, изучаем базовые команды и учимся работать с таблицами
  • Обрабатываем датасет с помощью Pandas: загружаем и выгружаем данные
Урок 6
Pandas. Основные функции

После того, как мы загрузили датасет, начинаем осваивать базовые функции.
  • Узнаём, как работают различные функции Pandas: подсчет, создание категорий выборок датасета и др
  • Учимся применять функции из предыдущего урока на нашем датасете
Урок 7
Numpy: улучшение математического аппарата

Изучаем основы линейной алгебры и знакомимся с видами машинного обучения.
  • Узнаём потенциал Numpy для работы с машинным обучением
  • Тренируемся работать с операциями высшей математики с помощью библиотеку Numpy
Урок 8
Numpy: машинное обучение без учителя

Узнаём, что такое обучение без учителя.
  • Строим классическую модель обучения без учителя в Numpy
  • Строим первую модель предсказания в библиотеке Numpy

3 модуль: Работа с машинным обучением
Урок 9
Обучение с учителем. Ближайшие соседи

Изучаем основы для создания нейронных сетей — они помогают переводить текст, создавать голосовых помощников, распознавать лица и музыку.
  • Осваиваем базовые принципы машинного обучения
  • Придумываем и реализовываем простой алгоритм
  • Возьмём классификатор на датасете
Урок 10
Градиентный спуск

Знакомимся с методом градиентного спуска, чтобы оценивать качество работы нейронной сети.
  • Оцениваем качество алгоритма машинного обучения, функция ошибки
  • Узнаём, как производные и градиентный спуск помогают уменьшать ошибки алгоритма
  • Закрепляем метод градиентного спуска для переменных
Урок 11
Линейная регрессия

Прогнозируем значение переменных по заранее известным данным.
  • Определяем задачи регрессии, чтобы прогнозировать стоимость домов
  • Наглядно визуализируем данные с помощью матрицы корреляций
  • Учимся измерять качество регрессии, чтобы проверить наши предположения
  • Применяем метод градиентного спуска, чтобы найти минимум средней квадратической ошибки
Урок 12
Логистическая регрессия

Прогнозируем результаты с помощью логистических функций.
  • Узнаём, что такое логистическая функция, какие у нее свойства и преимущества
  • Применяем метод градиентного спуска для логистической регрессии, чтобы определять стоимость домов
Урок 13
Работаем с базовой нейронной сетью

Узнаём о преимуществах и недостатках нейронных сетей.
  • Сравниваем устройство нейронных сетей с нервной системой человека
  • Разбираем готовую нейронную сеть, выбираем количество слоёв и нейронов
  • Запускаем нейронную сеть, чтобы распознавать рукописные цифры
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
geekbrains введение в искусственный интеллект дмитрий санников илья акчурин научитесь программировать светлана шорина

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.